
..

I

t

1

,

f

N

0

I , e

' X-565-67-483

COMPILER

/

60DDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

X- 565 -6 7 -483

I .

A DECOMMUTATION COMPILER

E. I. Grunby
Information Processing Division

October 1967

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

A DECOMMUTATION COMPILER

INTRODUCTION

The steps in performing decommutation for an experiment a re comparatively
few:

0 Read an input tape

0 Declare whether the main-frame matrix is stored in memory by row o r
column

0 Specify what fill (or padding) characters are to be used

0 Decommutate over a fixed list of row indices while the column indices
vary

0 Decommutate over a fixed list of column indices while the row indices
vary

0 Decommutate an arbitrary number of "random" elements

0 Define a subroutine and its exit

0 Call a subroutine

e Write the decomrmtated iifoi-ciiztieii izcciiiiiuia'wd ior a given experiment
on a given output tape

The function of the decommutation (decom) compiler is to generate machine-
language instructions to accomplish these tasks and to check for e r rors in the
compiler language.

Judicious use of the SLEUTH I1 assembly system makes it possible to define
the entire set of decom compiler instructions by procedures which are available
at compilation time. When a program calls the procedures and specifies the
proper parameters, machine-language code is generated. Great care has been
taken to detect parameter e r rors and to place appropriate flags on the program
1 is ting .

1

FORMATS

The following paragraphs describe the instruction formats for the decom
compiler, with their uses, as well as details of (internal) compiler logic.

ARRAY

Format-

YYYYYY ARRAY A R, C A 'XXXXXX'

where R is the number of rows in the matrix,
C is the number of columns in the matrix,
XXXXXX is either BY ROW or BY COL for the storage method,
YYYYYY is arbitrary and may be omitted.

- Use-This procedure must be used as the first instruction of an independent
decem program o r subroutine in order to establish core-storage information for
the compiler instructions DCOMCR, DCOMRC, ELMENT. It defines the matrix
dimensions and the form of storage used.

Compiler logic-The procedure ARRAY defines two absolute global labels
(that is, values outside the procedure): ROW and COL, which have values of R
and C, respectively. References to these labels in the main program (or other
decom language procedures) will cause generation of the value at the reference
point.

An additional absolute global label defined in this procedure, SBRC, will
have the value (in Fieldata characters) of 'XXXXXX' as defined above.

FILL -
Format-

where X X X X X X is the label to be equated to the fill value,
- e is any SLEUTH I1 expression.

Use-This procedure, which defines a fill o r padding value, must be used
before any references to it by other decom instructions. Any number of fill values
may be defined; however, each label may be used only once in a givensubprogram.

2

Compiler Logic-A check is first made to see if 2 is negative. If 2 is posi-

(The original sign bit is masked out.) An NOP in-
tive, XXXXXX is equated to -2. If 2 is negative, XXXMM is equated to the com-
plement of bits 34 = 00 of e.
struction is generated withan operand selected to force a truncation flag on the
SLEUTH I1 listing.

Because the foregoing label was defined at the main program level, it is
available to all decom language instructions. It is global in the same sense that
ROW was in the instruction ARRAY. Negative values a re defined for flagging
purposes, so that fill-data labels may be distinguished from matrix-element
subscripts .

CALL

Format-

A- A CALL XXXXXX

where XXXXXX is the label defining a subroutine declared with a SUBROU
instruction.

- Use-This procedure transfers to the required subroutine.

Computer Logic-Matching instruction SLJ XXXXXX is generated.

SUBROU

Format-

X X X X X X SUBROU

where XXXXXX is the label defining the entrance line of this subroutine.

- Use-This procedure provides an entry point into instructions for a decom
language subroutine. If the subroutine is independently assembled, X X M M X
must be externally defined by an asterisk. Subroutines may be defined at any
point permissible by program logic.

Compiler Logic-Machine instruction XXXMM J $ is generated to accom-
modate the entry of an SLJ call.

3

EXIT

Format-

A*A EXIT

where XXXXXX is the label on the SUBROU line defining the subroutine.

- - - .e-This procedure is an exit line from subroutine XXXXXX. Any number
of these instructions may be used; their positions within the subroutine may
be arbitrary.

Compiler Logic-Machine instruction J XXXXXX is generated.

ELMENT

Format-

where p(n) may have two forms: form r , c which uses row and column indices
of a desired matrix element from the input array, or form XXXMM which uses
the label XMuzXx of a FILL instruction. Any number of parameters may be
specified and continuation cards may be used.

- Use-This procedure selects from left to right the indicated matrix elements
from the current input matrix or f i l l values and stores the sequence in an
output a re a.

This description assumes that a definition for ARRAY was made before the
call of ELMENT and that, if a fill value is used, the associated label was defined
earlier in the coding.

Compiler Logic-The first step is to generate a code which initializes an
index register with the relative address of the next available cell in the output-
storage area. The address value, labeled N, is either a zero or a nonzero
value from a decom statement (ELMENT, DCOMRC, or DCOMCR) generated
just previously. Next, array storage is sensed by testing SBRC against BY ROW
o r BY COL. Matrix elements can be properly referenced by using appropriate
coding during the ELMENT procedure. The generated coding is a series of load-
store pairs, one pair for each list in the calling sequence. A l ist in the calling
sequence is usually in the form r, c.

4

c

Each r and - c are checked to see whether they a re valid matrix indices. If
they a re &proper, an illegal instruction is generated to provide an I flag on the
printer listing. If valid, the address of the proper element in the input area is
constructed and placed in the load instruction.

If a list in the calling sequence consists solely of a label previously assigned
as a f i l l value, a literal for this value is generated in the load instruction. Be-
cause the FILL statement complements the fi l l definition, a negative literal value
is created. When the value of the absolutely defined f i l l label is positive or when
a list has more than two parameters, error conditions arise for which an illegal
instruction with an I flag is generated.

The "store" instruction simply places the loaded data point into an output
bin called OUTPUT. The previously loaded relative bin index is used for address
modification and is incremented by one after the "storef1 is completed.

After all load-store pairs a re generated, the decom compiler causes an in-
struction to be assembled which stores the incremented relative bin-index back
to cell N, making it available for initializing storage for a decom-storage
statement.

DCOMRC

Format-

. . . DCOMRC rl, r,, r3 c,, c, . . . c,
Parameter r3 may be omitted, thus implying the condition r, = 1. The

number of parameters in list c is arbitrary. Continuation cards may be used.

- Use-This statement permits an iterative selection of matrix elements from
the current input matrix. The iterative scheme is similar to the DO statement
in FORTRAN. Constant rl is the initial value of the row index. For each column
value c,, the row index is applied and elements r,, c, through r,, c, a re selected
and stored in an output area. Row increment r3 is then applied and elements r,
+ r3, c, through rl -t r,, c,are selected and stored. This process is repeated k
times (k being equivalent to rl + (k + 1) r3> r,). Therefore, the final value of
row index r3 will never be exceeded. As in FORTRAN IV, r2 can be negative.
Omission of r, implies an increment of one.

To select and store f i l l values, it is necessary only to define f i l l labels be-
fore using DCOMRC and to place them at the desired positions in the list of
column indices.

5

This procedure assumes that, in addition to defining all f i l l values earlier
in the program, the statement ARRAY was previously used to declare the size
and manner of storage of the matrix.

For example, use of the following statements will store (1,5), @, (1 , 2) , (3, 5) ,
4, (3 , Z) in the output area:

ARRAY 129,135

DCOMRC 1,392
2 FILL @

'BY ROW'

5, z, 2

Computer Logic-Appropriate parameters required for performing iterations
over the list of column indices must be determined. The row increment, D, is
taken as stated or, i f the implied format is used, the value of one is assumed.
Both initial and final values of the row indices (reduced by one to translate the
index origins to zero) are named I and L, respectively. A repeat count, R, is
then developed by determining the integer part of (L-I)/D. Because the final
row index may not be an integral number of increments from the initial row in-
dex, an exact final value is computed. The exact value, F, is R*D +I.

Parameter formats a re checked before the coding for DCOMRC is generated.
An illegal-operation r lag , I, is generated if:

1. The number of parameter lists does not equal one.

2. The computed repeat count R is negative.

3. I or F is negative.

4. The stated initial o r final row index exceeds the maximum permissible
row subscript.

The technique for coding DCOMRC is similar to that used for ELMENT.
Switch SBRC determines whether BY ROW or BY COL matrix storage was selec-
ted, afterwhich an appropriate internal procedure produces load-store instruction
pairs. If a negative column index is detected, the complement of this value be-
comes a literal and is used as f i l l data. If column indices lie beyond the maxi-
mum column index, illegal-operation flags, I's, appear on the program listing.

6

